

# Advantages of NTRU compared to ML-KEM

draft-fluhrer-cfrg-ntru-02

Scott Fluhrer, Michael Prorock, Sofia Celi, John Gray, Keita Xagawa, Haruhisa Kosuge

## **Quick Overview**



### NTRU is:

- Post-quantum KEM (Key Encapsulation Mechanism) used for secret key sharing.
- One of Round 3 candidates of NIST PQC competition.
- Based on lattices over polynomial rings.

## NTRU must be standardized in IETF, because NTRU has:

- Some advantages over ML-KEM
- Mature Specification
- Industrial adoption
- Plans for further adoption

Are others interested in the CFRG working on this? Let's discuss on the mailing list.

## Some advantages over ML-KEM



## Advantages over ML-KEM

- No patent issues (patent free).
- Long history without security issues (since 1996)
- Flexible parameter such as lattice dimensions.
- Masking implementation is easy since FO-transform is not used.

## Disadvantages over ML-KEM

KeyGen (key generation) is slower.

NTRU can be used in almost all scenarios where ML-KEM is applicable.

## Performance Comparison on Cortex-M4



|                                               |            | Bit security in non-local model | KeyGen [K cycles] | Encaps [K cycles] | Decaps [K cycles] |
|-----------------------------------------------|------------|---------------------------------|-------------------|-------------------|-------------------|
| NTRU [PC22]                                   | hps2048677 | 145                             | 142,378           | 816               | 729               |
|                                               | hrss701    | 151                             | 153,508           | 369               | 787               |
|                                               | hps4096821 | 178                             | 212,377           | 1,026             | 914               |
| ML-KEM<br>(Round 3<br>Kyber<br>Specification) | 512        | 118                             | 434               | 530               | 476               |
|                                               | 768        | 183                             | 706               | 863               | 783               |
|                                               | 1024       | 256                             | 1,122             | 1,315             | 1,209             |

For the same security in non-local model, NTRU is as fast as ML-KEM (except KeyGen).

[PC22]:Paksoy, I. K., & Cenk, M. (2022). Faster NTRU on ARM Cortex-M4 with TMVP-based multiplication.

# **Size Comparison**



|                                               |            | Bit security in non-local model | Public Key<br>[bytes] | Private Key<br>[bytes] | Ciphertext<br>[bytes] | Public key<br>+ Ciphertext<br>[bytes] |
|-----------------------------------------------|------------|---------------------------------|-----------------------|------------------------|-----------------------|---------------------------------------|
| NTRU<br>(Round 3<br>NTRU<br>Specification)    | hps2048677 | 145                             | 699                   | 935                    | 699                   | 1,398                                 |
|                                               | hrss701    | 151                             | 930                   | 1,234                  | 930                   | 1,860                                 |
|                                               | hps4096821 | 178                             | 1,138                 | 1,450                  | 1,138                 | 2,276                                 |
| ML-KEM<br>(Round 3<br>Kyber<br>Specification) | 512        | 118                             | 800                   | 1,632                  | 768                   | 1,568                                 |
|                                               | 768        | 183                             | 1,184                 | 2,400                  | 1,088                 | 2,272                                 |
|                                               | 1024       | 256                             | 1,568                 | 3,168                  | 1,568                 | 3,136                                 |

For the same security in non-local model, NTRU has the similar sizes as ML-KEM.

# Size Comparison to HQC



|      |            | Public Key<br>[bytes] | Private Key<br>[bytes] | Ciphertext<br>[bytes] | Public key<br>+ Ciphertext<br>[bytes] |
|------|------------|-----------------------|------------------------|-----------------------|---------------------------------------|
| NTRU | hps2048677 | 699                   | 935                    | 699                   | 1,398                                 |
|      | hrss701    | 930                   | 1,234                  | 930                   | 1,860                                 |
|      | hps4096821 | 1,138                 | 1,450                  | 1,138                 | 2,276                                 |
| HQC  | 128        | 2,249                 | 2,289                  | 4,481                 | 6730                                  |
|      | 192        | 4,522                 | 4,595                  | 9,026                 | 13548                                 |
|      | 256        | 7,245                 | 7.349                  | 14,469                | 21714                                 |

There is no performance analysis of HQC on Cortex-M4.

# **Mature Specification**



Workgroup:

**CFRG** 

Internet-Draft: draft-fluhrer-cfrg-ntru-latest

Published: 1 March 2025
Intended Status: Informational
Expires: 2 September 2025

Authors: S. Fluhre

S. Fluhrer S. Prorock

ock

J. Gray

K. Xagawa

H. Kosuge

Cisco Systems mesur.io

Brave Entrust

N7

#### NTRU Key Encapsulation

#### **Abstract**

This draft document provides recommendations for the implementation of a post-quantum Key Encapsulation Mechanism (KEM) scheme based on the NTRU encryption scheme. The KEM is an existing cryptographic system; no new cryptography is defined herein. The well-defined and reviewed parameter sets for the scheme are defined and recommended. The test vectors are also provided.

#### Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

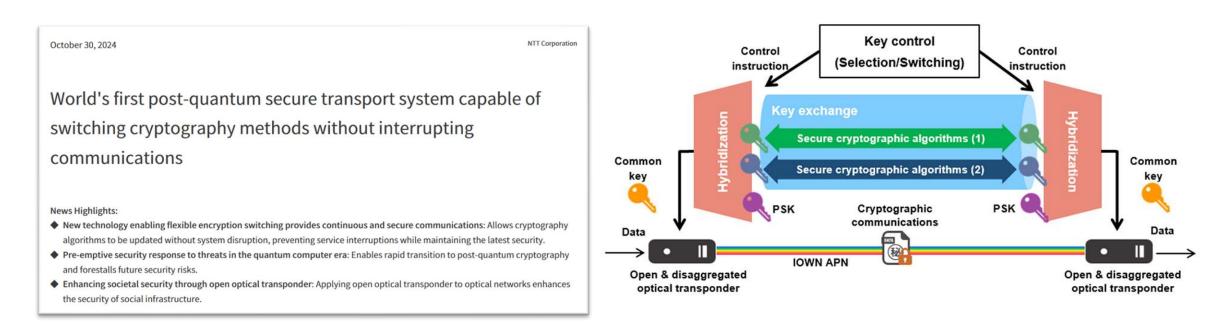
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at <a href="https://datatracker.ietf.org/drafts/current/">https://datatracker.ietf.org/drafts/current/</a>.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or

#### **Table of Contents**

- 1. Foreword
- 2. Introduction
- 3. Terminology
  - 3.1. Conventions and Definitions
  - 3.2. Notational Conventions
- 4. Parameter Sets
- 4.1. NTRU-HPS
- 4.2. NTRU-HRSS
- 5. Cryptographic Dependencies
  - 5.1. Polynomials
    - 5.1.1. Polynomial in NTRU
    - 5.1.2. Polynomial Addition
    - 5.1.3. Polynomial Subtraction
    - 5.1.4. Polynomial Multiplication
    - 5.1.5. Polynomial Inversion
    - 5.1.6. Polynomial Reduction
    - 5.1.7. Computing a Polynomial Modulo (x<sup>N-1</sup>)/(x-1)
    - 5.1.8. Modulus Conversion

GitHub - mesur-io/ntru-key-encapsulation: NTRU Key Encapsulation

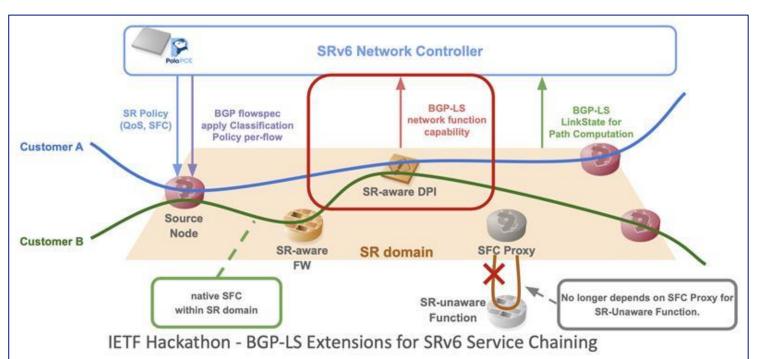



# Industrial Adoption (two examples)

# Post-quantum Secure Transport System



- Technology enabling flexible crypto switching, which will be utilized in all photonic network connecting Japan and Taiwan.
- The system implements NTRU for the key exchange function.




https://group.ntt/en/newsrelease/2024/10/30/241030a.html

## **VPN** in Software Router Kamuee



- Kamuee is DPDK-based software router that is in commercial use.
- The Kamuee team is working on standardizing SRv6 SFC-Arch at IETF.
- An NTRU-based IPsec VPN will be implemented in Kamuee soon.



#### 100G Router version

- Hardware Price: Approx. \$40,000USD
- Supermicro 7048GR-TR: 4U Tower Server
- 100GbE (QSFP28: SR4/LR4) x 12 ports (6 slot) or
- 100GbE (QSFP28: SR4/LR4) x 10 ports + 10GbE (SFP+: SR/LR) x 4 ports





https://datatracker.ietf.org/meeting/121/materials/slides-121-hackathon-sessd-bgp-ls-extensions-for-srv6-service-chaining-00

## Plans for Further Adoption



## We are working on:

- Re-adding NTRU to liboqs (almost completed).
- Launching a project to standardize IKEv2 with NTRU.
- Updating NTRU.org, and using it to share the latest information.

We still have very challenging work ahead, so we are looking for teammates. We will hold a public side meeting for NTRU. If you're interested, join us! (March 18<sup>th</sup>, 16:00-17:00 @Meeting Room 3)

## **Summary**



NTRU must be standardized in IETF, because NTRU has:

- Some advantages over ML-KEM
- Mature draft
- Industrial adoption
- Plans for further adoption

Are others interested in the CFRG working on this? Let's discuss on the mailing list.